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/’L) Objectives and Tasks

» Los Alamos

Objectives:

» Develop technology for on-board reforming diesel fuel for APU applications.
» Understand parameters that affect fuel processor performance, lifetime and
durability.

Tasks:

* Carbon Formation Measurement of Diesel Fuel
 Equilibrium and component modeling
» Experimental carbon formation measurement
 Fuel Mixing
*\aporization
* Direct liquid injection & fuel atomization
 Low water ‘Waterless’ Partial Oxidation of Diesel Fuel
o Start-up
» SOFC anode recycle
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Integration Issues:
Expect multiple uses for Diesel reformate: (SOFC, de-NOx, EGR)
Oxidant (Air or Engine Exhaust [12 - 17 % O,])
On-board water (low water operation, zero water start-up)
SOFC Anode recycle/Engine exhaust add water
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Fuel Processing Catalysts & Poisons
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AN Diesel Reforming System

> Los Alamos Integration Issues

 BOP - Balance of plant
 Air Feed
e air compressor air
» engine exhaust
» Water
» Operation without water
» System water balance
* Reactor fuel feed
* vaporization (without carbon formation)
» direct injection / atomization
* Reactor start-up / light-off
e Time
e Carbon formation
« Catalyst durability and activity / fuel sulfur

e Carbon formation
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Fluorescence - Reactor Catalyst
Scattering ~ Window Gt
L V% ; \ . ° Laser extinction
- o 4R AN ' measurements monitor on-
.. set of carbon

Extinction

o Laser scattering quantifies
carbon formation

» Fluorescence indicates
PAHCs

Ar lon Laser

Laser Chopper

Beam Splitter
Detector Reference Beam




/,L) Gasoline/Diesel
> Los Alamos Partial Oxidation / Reformers

Adiabatic Reactors — ‘real’ operating conditions

Gasoline/diesel
Reformer - in situ
carbon formation
measurements

Reformer for
APU/SOFC (Solid-
Oxide Fuel Cell /
Auxiliary Power
Unit — 5 kW)

Reformer (1 kW)
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Fuel Injection/VVaporization

 Fuel injection technigues into the reformer
* Pre-vaporization
» fuel pyrolysis and carbon formation
e Liquid injection
* limit residence time of fuel under carbon forming condition
» fuel atomization and distribution
» flash vaporization
* potential catalyst degradation
« Steam vaporization of fuel
» Steam suppresses carbon formation
* requires steam — still can have feed issues




/’\7 Carbon Formation Issues

» Los Alamos

» Avoid Fuel Processor Degradation due to Carbon Formation
e Operation in non-equilibrium Carbon formation regions
 Requires high temperatures / steam Content — limits efficiency (80 %)
* Promoted catalysts

e Start-up
e Rich start-up cannot avoid favorable carbon equilibrium regions
e Stoichiometric has high adiabatic temperature rise
 \Water-less (Water not expected to be available at start-up)

 Operation for maximum efficiency
e low of O/C and S/C as possible (C limits)
» fuel conversion

e Diesel fuels
» carbon formation due to pyrolysis upon vaporization
e pre-ignition of fuel




Limiting Carbon Formation

* Mapping Carbon Equilibrium and Carbon Formation
» Temperature / Steam Content / Oxygen Content

» Fuel / Steam / Water mixing
» Fuel vaporization
 Direct fuel injection to oxidation

» Carbon Formation Mechanisms
» Hydrocarbon decomposition
« Accumulation of hydrocarbon on surface with polymer formation (polyaromatics)
» Pyrolytic carbon formed from olefins

Carbon (Soot) Formation

2CO < C + CO;, (Boudart Reaction)

CH; < C +2H;, (CH4 Decomposition)

CH; —» CyHg + H, > CoH4 + Hy —» CoH3 + Hy —» aromatics + H, — soot
CnhHan > C, + nH;




AN Catalyst Interaction with

» Los Alamos Carbon Formation

o Catalysts Compositions

o Catalyst
e Pd >> Pt > Rh > Re > Ru, Ir (Methane decomposition studies)

e Support
« Oxygen donation
* YSZ, Ceria, La
» Pt/YSZ -Pt/Ceria
 Alkali promoters (K etc.)
* Bimetalics
 Pt/Re/AlLQ,
(Re must be reduced - operation with H,O)

[Pt/Re/YSZ shows poor performance with H,O, good dry]




Modeling of Carbon Formation Disappearance
for Different Fuel Compositions
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al Technical Results:

» Los Alamos Carbon formation measurements

Carbon formation monitoring with laser scattering R |
., Odorless Kerosene; S/C = 1.0 eSQ s -
« Partial oxidation of

* odorless kerosene
» kKerosene
 dodecane

» hexadecane

*
L 4

e Carbon formation
o5 : monitoring by laser optics

O/C Ratio

e Carbon formation shown
at low relative O/C ratios
and temperature with
kerosene (left)

* Demonstrated start-up
with no water — carbon
formation observed after ~
100 hrs of operation




2 Fuel / Water co-vaporization Issues

» Los Alamos

Decrease in fuel/H,O inlet temperature (pool boiling or condensation)

corresponds with increase in adiabatic temperature rise
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Switched Fuel Operation:
De-odorized Kerosene to Normal Kerosene

Fuel Effect on Auto - Ignition
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/J_) Partial Oxidation Stage Outlet Concentrations

> Los Alamos (for similar oxygen conversion)
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/’\7 Technical Progress Summary/Findings

» Los Alamos

® Demonstrated start-up with no water — carbon formation observed after ~ 100 hrs of
operation
o Catalytic oxidation
» diesel components kinetically slower than gasoline components
 Carbon Formation
 Greater carbon formation with aromatics

* Diesel Fuel Components (Dodecane)
 Lower conversion / higher residence time required for conversion

o Laser & visual monitoring of carbon formation
* Fuel testing: Dodecane, hexadecane, kerosene, de-odorized kerosene
» Modeling: equilibrium, carbon formation, thermodynamic properties

 Pre-combustion
* Diesel fuels much more likely for pre-combustion
» kerosene has higher pre-combustion tendancies than de-odorized kerosene




